Likelihood Function
Likelihood Function
The likelihood function is the joint probability of the given data (say \(x\)) viewed as a function.
Definition
\[\begin{align*} & L(\theta|x_1, x_2, ..., x_n) \\ &= \text{joint pmf/pdf of random variables } x_1, x_2, ..., x_n \text{ from } \theta \\ &= f(x_1, x_2, ..., x_n|\theta) \\ &= f(x_1|\theta) \times f(x_2|\theta) \times ... \times f(x_n|\theta) \\ &= \prod_{i=1}^{n}f(x_i|\theta) \\ \end{align*}\]Log-Likelihood Function
Plugging the Likelihood function into a logarithm shows as follows:
\[\begin{align*} &l(\theta|x_1, x_2, ..., x_n) \\ &= log(L(\theta|x_1, x_2, ..., x_n)) \\ &= log(\prod_{i=1}^{n}f(x_i|\theta)) \\ &= \sum_{i=1}^{n}{log{f(x_i|\theta)}} \end{align*}\]